Playing With Projections:
 Ultrafilters, Mathias Forcing and Cardinal Invariants with Closed Subspaces of l^{2}

Tristan Bice
Kobe University
Japan

3 February 2011

Hilbert Space Projections and Subspaces

Definition

A Hilbert space is a (real or complex) vector space H together with a complete inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$.

$$
H=l^{2}=\left\{\left(x_{n}\right) \subseteq \mathbb{F}: \sum\left|x_{n}\right|^{2}<\infty\right\} \text { and }\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum x_{n} \overline{y_{n}}
$$

Definition

A projection $P_{V} \in \mathcal{P}(H)$ onto $V \in \bar{\nu}(H)$ is a linear operator such that

- For $U, V \in \overline{\mathcal{V}}(H)$,

$$
U \subseteq V \Leftrightarrow P_{U} \leq P_{V} \Leftrightarrow P_{U} P_{V}=P_{U}=P_{V} P_{U}
$$

Hilbert Space Projections and Subspaces

Definition

A Hilbert space is a (real or complex) vector space H together with a complete inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$.

$$
\text { - } H=l^{2}=\left\{\left(x_{n}\right) \subseteq \mathbb{F}: \sum\left|x_{n}\right|^{2}<\infty\right\} \text { and }\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum x_{n} \overline{y_{n}} .
$$

Definition

A proiection $P_{V} \in \mathcal{P}(H)$ onto $V \in \overline{\mathcal{V}}(H)$ is a linear operator such that

- For $U, V \in \overline{\mathcal{V}}(H)$,

$$
\widetilde{U} \subseteq V \Leftrightarrow P_{U} \leq P_{V} \Leftrightarrow P_{U} P_{V}=P_{U}=P_{V} P_{U}
$$

Hilbert Space Projections and Subspaces

Definition

A Hilbert space is a (real or complex) vector space H together with a complete inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$.

$$
\text { - } H=l^{2}=\left\{\left(x_{n}\right) \subseteq \mathbb{F}: \sum\left|x_{n}\right|^{2}<\infty\right\} \text { and }\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum x_{n} \overline{y_{n}}
$$

Definition

A projection $P_{V} \in \mathcal{P}(H)$ onto $V \in \overline{\mathcal{V}}(H)$ is a linear operator such that

$$
\forall x \in H \quad P x \in V \quad \text { and } \quad x-P x \perp V
$$

- For $U, V \in \overline{\mathcal{V}}(H)$,
$U \subseteq V \Leftrightarrow P_{U} \leq P_{V} \Leftrightarrow P_{U} P_{V}=P_{U}=P_{V} P_{U}$.

Hilbert Space Projections and Subspaces

Definition

A Hilbert space is a (real or complex) vector space H together with a complete inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$.

$$
\text { - } H=l^{2}=\left\{\left(x_{n}\right) \subseteq \mathbb{F}: \sum\left|x_{n}\right|^{2}<\infty\right\} \text { and }\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum x_{n} \overline{y_{n}} .
$$

Definition

A projection $P_{V} \in \mathcal{P}(H)$ onto $V \in \overline{\mathcal{V}}(H)$ is a linear operator such that

$$
\forall x \in H \quad P x \in V \quad \text { and } \quad x-P x \perp V
$$

- For $U, V \in \overline{\mathcal{V}}(H)$,

$$
U \subseteq V \Leftrightarrow P_{U} \leq P_{V} \Leftrightarrow P_{U} P_{V}=P_{U}=P_{V} P_{U}
$$

Modulo Compact Operators

- $\mathcal{K}(H)=\left\{T \in \mathcal{B}(H): \overline{T\left[B_{1}(H)\right]}\right.$ is compact $\}$.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$ is the canonical homomorphism.

- Basis $\left(e_{n}\right)_{n \in \omega} \subseteq H$. Canonical Embedding $\mathscr{P}(\omega) \mapsto \overline{\mathcal{V}}(H)$,

$$
A \mapsto V_{A}=\overline{\operatorname{span}}\left\{e_{n}: n \in A\right\}
$$

Modulo Compact Operators

- $\mathcal{K}(H)=\left\{T \in \mathcal{B}(H): \overline{T\left[B_{1}(H)\right]}\right.$ is compact $\}$.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$ is the canonical homomorphism.
- $U \leq^{*} V \Leftrightarrow P_{U} \leq^{*} P_{V} \Leftrightarrow \pi\left(P_{U} P_{V}\right)=\pi\left(P_{U}\right)=\pi\left(P_{V} P_{U}\right)$.
- Basis $\left(e_{n}\right)_{n \in \omega} \subseteq H$. Canonical Embedding $\mathscr{P}(\omega) \mapsto \overline{\mathcal{V}}(H)$,

$$
A \mapsto V_{A}=\overline{\operatorname{span}}\left\{e_{n}: n \in A\right\} .
$$

Modulo Compact Operators

- $\mathcal{K}(H)=\left\{T \in \mathcal{B}(H): \overline{T\left[B_{1}(H)\right]}\right.$ is compact $\}$.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$ is the canonical homomorphism.
- $U \leq^{*} V \Leftrightarrow P_{U} \leq^{*} P_{V} \Leftrightarrow \pi\left(P_{U} P_{V}\right)=\pi\left(P_{U}\right)=\pi\left(P_{V} P_{U}\right)$.
- Basis $\left(e_{n}\right)_{n \in \omega} \subseteq H$. Canonical Embedding $\mathscr{P}(\omega) \mapsto \overline{\mathcal{V}}(H)$,

$$
\begin{gathered}
A \mapsto V_{A}=\operatorname{span}\left\{e_{n}: n \in A\right\} . \\
A \subseteq^{*} B \Leftrightarrow V_{A} \leq^{*} V_{B}
\end{gathered}
$$

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$\sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1$.

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \mathcal{V}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \mathcal{V}(H)$.

Corollary

No non-trivial finite or countable gaps in $\mathcal{V}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1
$$

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \mathcal{V}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \mathcal{V}(H)$.

Corollary

No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\begin{aligned}
& \sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1 . \\
\Leftrightarrow & \exists P \wedge^{*} Q .
\end{aligned}
$$

$\Leftrightarrow \exists^{*}-\max V \subseteq \mathcal{R}(P)+\mathcal{R}(Q)$.

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \overline{\mathcal{V}}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \overline{\mathcal{V}}(H)$.

Corollary

No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\begin{aligned}
& \sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1 . \\
\Leftrightarrow & \exists P \wedge^{*} Q . \\
\Leftrightarrow & \exists P \vee^{*} Q .
\end{aligned}
$$

$$
\Leftrightarrow \exists^{*}-\max V \subseteq \mathcal{R}(P)+\mathcal{R}(Q) .
$$

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \mathcal{V}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \mathcal{V}(H)$

Corollary

No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\begin{aligned}
& \sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1 . \\
\Leftrightarrow & \exists P \wedge^{*} Q . \\
\Leftrightarrow & \exists P \vee^{*} Q . \\
\Leftrightarrow & \exists^{*}-\max V \subseteq \mathcal{R}(P)+\mathcal{R}(Q) .
\end{aligned}
$$

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \overline{\mathcal{V}}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \overline{\mathcal{V}}(H)$

Corollary

No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\begin{aligned}
& \sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1 . \\
\Leftrightarrow & \exists P \wedge^{*} Q . \\
\Leftrightarrow & \exists P \vee^{*} Q . \\
\Leftrightarrow & \exists^{*}-\max V \subseteq \mathcal{R}(P)+\mathcal{R}(Q) .
\end{aligned}
$$

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \overline{\mathcal{V}}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \overline{\mathcal{V}}(H)$.

Corollary
No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Basic Order Properties

$\mathcal{P}(H)$ is not a lattice.

Theorem

$$
\begin{aligned}
& \sup \left(\sigma_{e}(P Q P) \cap[0,1)\right)<1 . \\
\Leftrightarrow & \exists P \wedge^{*} Q . \\
\Leftrightarrow & \exists P \vee^{*} Q . \\
\Leftrightarrow & \exists^{*}-\max V \subseteq \mathcal{R}(P)+\mathcal{R}(Q) .
\end{aligned}
$$

Theorem

Arbitrary $\left(V_{n}\right) \subseteq \overline{\mathcal{V}}(H)$ has \leq^{*}-equivalent decreasing $\left(U_{n}\right) \subseteq \overline{\mathcal{V}}(H)$.

Corollary

No non-trivial finite or countable gaps in $\overline{\mathcal{V}}(H)$.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P} . \mathcal{F}$ is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]<\omega \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.

- [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
© ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.
- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]^{<\omega} \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.

- [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
© ultra[prelfilter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.
- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]<\omega \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
© [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
© ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]<\omega \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
(3) [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
© ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]^{<\omega} \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
(3) [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
(9) ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]^{<\omega} \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
(3) [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
(9) ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]^{<\omega} \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
(3) [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
(9) ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

Ultrafilters and Ultraprefilters

Definition

\mathbb{P} is a preorder and $\mathcal{F} \subseteq \mathbb{P}$. \mathcal{F} is a
(1) prefilter base (on \mathbb{P}) if $\forall \mathcal{G} \in[\mathcal{F}]^{<\omega} \exists p \in \mathbb{P} \forall g \in G(p \leq g)$.
(2) filter base if \mathcal{F} is a prefilter base on itself.
(3) [pre]filter (on \mathbb{P}) if \mathcal{F} is an upwards closed [pre]filter base.
(9) ultra[pre]filter $($ on $\mathbb{P})$ if \mathcal{F} a [pre]filter base maximal in \mathbb{P}.

- A filter \mathcal{F} is an ultraprefilter $\Leftrightarrow \forall p \in \mathbb{P}(p \in \mathcal{F} \vee p \top q \in \mathcal{F})$.
- If \mathbb{P} is a lower semilattice then prefilters extend to filters.
- Then ultrafilters and ultraprefilters coincide.

P-Points

$$
\begin{aligned}
\mathcal{U} & \subseteq[\omega]^{\omega} \text { is an ultrafilter } \\
& \text { - } \mathcal{U} \text { P-point } \Rightarrow V_{\mathcal{U}}=\left\{V_{U}: U \in \mathcal{U}\right\} \text { ultraprefilter base. } \\
& \text { Otherwise } V_{\mathcal{U}} \text { not in an ultraprefilter filter. }
\end{aligned}
$$

Question

Can $V_{\mathcal{U}}$ be an ultrafilter for non-P-point \mathcal{U} ?

Theorem

All ultranrefilter filters on $\mathcal{P}(H)$ are σ-closed (P-points),
$\mathcal{U} \subseteq[\omega]^{\omega}$ is an ultrafilter

- \mathcal{U} P-point $\Rightarrow V_{\mathcal{U}}=\left\{V_{U}: U \in \mathcal{U}\right\}$ ultraprefilter base.
- Otherwise $V_{\mathcal{U}}$ not in an ultraprefilter filter.

Question

Can V / u, he an ultrafilter for non-P-point \mathcal{U} ?

Theorem

A11 ultranrefilter filters on $\mathcal{P}(H)$ are σ-closed (P-points).

P-Points

$\mathcal{U} \subseteq[\omega]^{\omega}$ is an ultrafilter

- \mathcal{U} P-point $\Rightarrow V_{\mathcal{U}}=\left\{V_{U}: U \in \mathcal{U}\right\}$ ultraprefilter base.
- Otherwise $V_{\mathcal{U}}$ not in an ultraprefilter filter.

$V_{\mathcal{U}}$ not an ultrafilter example

Take IP $\left(I_{n}\right) \subseteq \omega,\left|I_{n}\right| \rightarrow \infty, v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\overline{\operatorname{span}}\left(v_{n}\right)$.
Take ultrafilter \mathcal{U} on ω s.t. $\forall U \in \mathcal{U} \lim \sup \left|U \cap I_{n}\right| /\left|I_{n}\right|>0$.
Note: $\forall U \in \mathcal{U}\left(V_{U} \not 一 ⿻^{*} V_{\left(I_{n}\right)}^{\perp} \wedge \operatorname{dim}\left(V_{U} \cap V_{\left(I_{n}\right)}^{\perp}\right)=\infty\right)$.
$\therefore\left\{V_{U} \cap V: U \in \mathcal{U}\right\}$ extends upwards-closre of $V_{\mathcal{U}}$.

Question

Can V, u be an ultrafilter for non-P-point \mathcal{U} ?

Theorem

A11 ultraprefilter filters on $\mathcal{P}(H)$ are σ-closed (P-points)

P-Points

$\mathcal{U} \subseteq[\omega]^{\omega}$ is an ultrafilter

- \mathcal{U} P-point $\Rightarrow V_{\mathcal{U}}=\left\{V_{U}: U \in \mathcal{U}\right\}$ ultraprefilter base.
- Otherwise $V_{\mathcal{U}}$ not in an ultraprefilter filter.

$V_{\mathcal{U}}$ not an ultrafilter example

Take IP $\left(I_{n}\right) \subseteq \omega,\left|I_{n}\right| \rightarrow \infty, v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\overline{\operatorname{span}}\left(v_{n}\right)$.
Take ultrafilter \mathcal{U} on ω s.t. $\forall U \in \mathcal{U} \lim \sup \left|U \cap I_{n}\right| /\left|I_{n}\right|>0$.
Note: $\forall U \in \mathcal{U}\left(V_{U} \not \mathbb{Z}^{*} V_{\left(I_{n}\right)}^{\perp} \wedge \operatorname{dim}\left(V_{U} \cap V_{\left(I_{n}\right)}^{\perp}\right)=\infty\right)$.
$\therefore\left\{V_{U} \cap V: U \in \mathcal{U}\right\}$ extends upwards-closre of $V_{\mathcal{U}}$.

Question

Can $V_{\mathcal{U}}$ be an ultrafilter for non-P-point \mathcal{U} ?

Theorem
All ultraprefilter filters on $\mathcal{P}(H)$ are σ-closed (P-points).

P-Points

$\mathcal{U} \subseteq[\omega]^{\omega}$ is an ultrafilter

- \mathcal{U} P-point $\Rightarrow V_{\mathcal{U}}=\left\{V_{U}: U \in \mathcal{U}\right\}$ ultraprefilter base.
- Otherwise $V_{\mathcal{U}}$ not in an ultraprefilter filter.

$V_{\mathcal{U}}$ not an ultrafilter example

Take IP $\left(I_{n}\right) \subseteq \omega,\left|I_{n}\right| \rightarrow \infty, v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\overline{\operatorname{span}}\left(v_{n}\right)$.
Take ultrafilter \mathcal{U} on ω s.t. $\forall U \in \mathcal{U} \lim \sup \left|U \cap I_{n}\right| /\left|I_{n}\right|>0$.
Note: $\forall U \in \mathcal{U}\left(V_{U} \not \mathbb{Z}^{*} V_{\left(I_{n}\right)}^{\perp} \wedge \operatorname{dim}\left(V_{U} \cap V_{\left(I_{n}\right)}^{\perp}\right)=\infty\right)$.
$\therefore\left\{V_{U} \cap V: U \in \mathcal{U}\right\}$ extends upwards-closre of $V_{\mathcal{U}}$.

Question

Can $V_{\mathcal{U}}$ be an ultrafilter for non-P-point \mathcal{U} ?

Theorem

All ultraprefilter filters on $\mathcal{P}(H)$ are σ-closed (P-points).

Q-Points

Definition
An ultrafilter $\mathcal{P} \subseteq \mathcal{P}(H)$ is a Q-point if $\forall \operatorname{IP}\left(I_{n}\right) \subseteq \omega \exists \operatorname{coarser}\left(J_{n}\right)$ and $v_{n} \in \operatorname{span}\left\{e_{m}: m \in J_{n}\right\}$ s.t. $\overline{\operatorname{span}}\left(v_{n}\right) \in \mathcal{P}$.

Proposition

Every $\mathcal{P}(H)$-generic is an ultraprefilter Q-point.

Questions

Complete combinatorics? Other special ultrafilters? Rudin-Kiesler? Are $\left(\overline{\mathcal{V}}(H), \leq^{*}\right)$ and $\left(\overline{\mathcal{V}}_{\infty}(H), \subseteq\right)$ forcing equivalent? (like $\left(\mathscr{P}(\omega), \subseteq^{*}\right)$ and $\left([\omega]^{\omega}, \subseteq\right)$)

Q-Points

Definition

An ultrafilter $\mathcal{P} \subseteq \mathcal{P}(H)$ is a Q-point if $\forall \operatorname{IP}\left(I_{n}\right) \subseteq \omega \exists \operatorname{coarser}\left(J_{n}\right)$ and $v_{n} \in \operatorname{span}\left\{e_{m}: m \in J_{n}\right\}$ s.t. $\overline{\operatorname{span}}\left(v_{n}\right) \in \mathcal{P}$.

Proposition

Every $\mathcal{P}(H)$-generic is an ultraprefilter Q-point.

Q-Points

Definition

An ultrafilter $\mathcal{P} \subseteq \mathcal{P}(H)$ is a Q-point if $\forall \operatorname{IP}\left(I_{n}\right) \subseteq \omega \exists \operatorname{coarser}\left(J_{n}\right)$ and $v_{n} \in \operatorname{span}\left\{e_{m}: m \in J_{n}\right\}$ s.t. $\overline{\operatorname{span}}\left(v_{n}\right) \in \mathcal{P}$.

Proposition

Every $\mathcal{P}(H)$-generic is an ultraprefilter Q-point.

Questions

Complete combinatorics? Other special ultrafilters? Rudin-Kiesler? Are $\left(\overline{\mathcal{V}}(H), \leq^{*}\right)$ and $\left(\overline{\mathcal{V}}_{\infty}(H), \subseteq\right)$ forcing equivalent? (like $\left(\mathscr{P}(\omega), \subseteq^{*}\right)$ and $\left([\omega]^{\omega}, \subseteq\right)$)

Mathias-Like Forcing

Definition

$X \times \mathbb{P}$ is Mathias-like if
(1) $(x, p) \leq(y, q) \Rightarrow p \leq q$, and
(2) $p \leq q \Rightarrow(x, p) \leq(x, q)$.

Proposition

If $X \times \mathbb{P}$ is Mathias-like it is densely embeddable in $\mathbb{P} *(X \times \dot{G})$.

Proposition
If $\omega \times \mathbb{P}$ is Mathias-like and \mathbb{P} is proper so is $X \times \mathbb{P}$.

Mathias-Like Forcing

Definition
 $X \times \mathbb{P}$ is Mathias-like if
 (1) $(x, p) \leq(y, q) \Rightarrow p \leq q$, and
 (2) $p \leq q \Rightarrow(x, p) \leq(x, q)$.

Proposition

If $X \times \mathbb{P}$ is Mathias-like it is densely embeddable in $\mathbb{P} *(X \times G)$.

Proposition

If $\omega \times \mathbb{P}$ is Mathias-like and \mathbb{P} is proper so is $X \times \mathbb{P}$.

Mathias-Like Forcing

> Definition
> $X \times \mathbb{P}$ is Mathias-like if
> ($x, p) \leq(y, q) \Rightarrow p \leq q$, and
> - $p \leq q \Rightarrow(x, p) \leq(x, q)$.

Proposition

If $X \times \mathbb{P}$ is Mathias-like it is densely embeddable in $\mathbb{P} *(X \times G)$.

Proposition

If $\omega \times \mathbb{P}$ is Mathias-like and \mathbb{P} is proper so is $X \times \mathbb{P}$

Mathias-Like Forcing

Definition

$X \times \mathbb{P}$ is Mathias-like if
(1) $(x, p) \leq(y, q) \Rightarrow p \leq q$, and
(2) $p \leq q \Rightarrow(x, p) \leq(x, q)$.

Proposition

If $X \times \mathbb{P}$ is Mathias-like it is densely embeddable in $\mathbb{P} *(X \times \dot{G})$.

Proposition

If $\omega \times \mathbb{P}$ is Mathias-like and \mathbb{P} is proper so is $X \times \mathbb{P}$.

Mathias-Like Forcing

Definition

$X \times \mathbb{P}$ is Mathias-like if
(1) $(x, p) \leq(y, q) \Rightarrow p \leq q$, and
(2) $p \leq q \Rightarrow(x, p) \leq(x, q)$.

Proposition

If $X \times \mathbb{P}$ is Mathias-like it is densely embeddable in $\mathbb{P} *(X \times \dot{G})$.

Proposition

If $\omega \times \mathbb{P}$ is Mathias-like and \mathbb{P} is proper so is $X \times \mathbb{P}$.

Mathias Forcing with Projections

$$
\begin{gathered}
{\left[\mathcal{P}_{\infty}(H)\right]_{\text {min }}^{<\omega}=\left\{(\mathcal{P}, P): P \in \mathcal{P} \in\left[\mathcal{P}_{\infty}(H)\right]^{<\omega} \wedge \forall Q \in \mathcal{P}\left(P \leq^{*} Q\right)\right\}} \\
(\mathcal{P}, P) \leq(\mathcal{Q}, Q) \Leftrightarrow \mathcal{P} \supseteq \mathcal{Q} .
\end{gathered}
$$

For dense $\left(v_{n}\right) \subseteq H, \mathcal{V}_{\left(v_{n}\right)}^{<\infty}=\left\{\operatorname{span}_{n \in F}\left(v_{n}\right): F \in[\omega]^{<\omega}\right\}$.

$$
\mathbb{M}^{*}=\mathcal{V}_{\left(v_{n}\right)}^{<\infty} \times \omega \times\left[\mathcal{P}_{\infty}(H)\right]_{\text {min }}^{<\omega} .
$$

$(V, n, \mathcal{P}, P) \leq(W, m, \mathcal{Q}, Q) \Leftrightarrow$
$V \supseteq W \wedge \mathcal{P} \supseteq \mathcal{Q} \wedge \forall R \in \mathcal{Q}\left(\left\|\left.R\right|_{V \cap W^{\perp}}\right\|+1 / n \leq 1 / m\right)$,
Transitivity: if $\left||R|_{V \cap W^{\perp}} \|+1 / n \leq 1 / m\right.$ and $||R|_{W \cap X^{\perp}} \|+1 / m \leq 1 / l$,
$\left||R|_{V \cap X^{\perp}}\|+1 / n \leq\| R\right|_{V \cap W^{\perp}}\left\|+\left||R|_{W \cap X^{\perp}}\right|\left|+1 / n \leq\left\|\left.R\right|_{W \cap X^{\perp}}\right\|+1 / m \leq 1 / l\right.\right.$.

Splitting

- $\mathscr{P}(\omega) /$ Fin cardinal invariants have $(\geq) 2$ analogs \because

$$
\begin{array}{ccc}
P \wedge^{*} Q^{\perp} \neq 0 & \Rightarrow & P \not \not^{*} Q \\
\Uparrow & \nLeftarrow & \Uparrow \\
\left\|\pi\left(P Q^{\perp}\right)\right\|=1 & & \left\|\pi\left(P Q^{\perp}\right)\right\|>0
\end{array}
$$

- P strongly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0 \neq P^{\perp} \wedge^{*} Q$.
P weakly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0$ and $Q \not \not^{*} P$.
$\mathfrak{s}^{\perp}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a strongly splitting family $\}$.
$\mathfrak{s}^{*}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a weakly splitting family $\}$.

Splitting

- $\mathscr{P}(\omega) /$ Fin cardinal invariants have $(\geq) 2$ analogs \because

$$
\begin{array}{ccc}
P \wedge^{*} Q^{\perp} \neq 0 & \Rightarrow & P \not \not^{*} Q \\
\Uparrow & \nLeftarrow & \Uparrow \\
\left\|\pi\left(P Q^{\perp}\right)\right\|=1 & & \left\|\pi\left(P Q^{\perp}\right)\right\|>0
\end{array}
$$

- P strongly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0 \neq P^{\perp} \wedge^{*} Q$.
P weakly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0$ and $Q \not \&^{*} P$.
$\mathfrak{s}^{\perp}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a strongly splitting family $\}$.
$s^{*}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a weakly splitting family $\}$.

Splitting

- $\mathscr{P}(\omega) /$ Fin cardinal invariants have $(\geq) 2$ analogs \because

$$
\begin{array}{ccc}
P \wedge^{*} Q^{\perp} \neq 0 & \Rightarrow & P \not \nless_{*} Q \\
\Uparrow & \nLeftarrow & \mathbb{\Downarrow} \\
\left\|\pi\left(P Q^{\perp}\right)\right\|=1 & & \left\|\pi\left(P Q^{\perp}\right)\right\|>0
\end{array}
$$

- P strongly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0 \neq P^{\perp} \wedge^{*} Q$.
P weakly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0$ and $Q \not \mathbb{*}^{*} P$.
$\mathfrak{s}^{\perp}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a strongly splitting family $\}$.
$\mathfrak{s}^{*}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a weakly splitting family $\}$.

Splitting

- $\mathscr{P}(\omega) /$ Fin cardinal invariants have $(\geq) 2$ analogs \because

$$
\begin{array}{cccc}
P \wedge^{*} Q^{\perp} \neq 0 & \Rightarrow & P \not \not^{*} Q \\
\Uparrow & \nLeftarrow & \Uparrow \\
\left\|\pi\left(P Q^{\perp}\right)\right\|=1 & & \left\|\pi\left(P Q^{\perp}\right)\right\|>0
\end{array}
$$

- P strongly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0 \neq P^{\perp} \wedge^{*} Q$.
P weakly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0$ and $Q \not \mathbb{*}^{*} P$.
$\mathfrak{s}^{\perp}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a strongly splitting family $\}$.
$s^{*}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a weakly splitting family $\}$.

Splitting

- $\mathscr{P}(\omega) /$ Fin cardinal invariants have $(\geq) 2$ analogs \because

$$
\begin{array}{cccc}
P \wedge^{*} Q^{\perp} \neq 0 & \Rightarrow & P \not \not^{*} Q \\
\Uparrow & \nLeftarrow & \Uparrow \\
\left\|\pi\left(P Q^{\perp}\right)\right\|=1 & & \left\|\pi\left(P Q^{\perp}\right)\right\|>0
\end{array}
$$

- P strongly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0 \neq P^{\perp} \wedge^{*} Q$.
P weakly splits $Q \Leftrightarrow P \wedge^{*} Q \neq 0$ and $Q \not \mathbb{*}^{*} P$.
$\mathfrak{s}^{\perp}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a strongly splitting family $\}$.
$\mathfrak{s}^{*}=\min \{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{P}(H)$ is a weakly splitting family $\}$.

Block Subspaces

- V is a block subspace of $H=\operatorname{span}\left(e_{n}\right)$ means
$\exists \operatorname{IP}\left(I_{n}\right)$ and $\exists\left(v_{n}\right) \subseteq l^{2}$ s.t.
$V=\operatorname{span}\left(v_{n}\right)$ and $\forall n v_{n} \in \operatorname{span}\left\{e_{k}: k \in I_{n}\right\}$.
- Block subspaces are \leq^{*}-dense.

Given $\inf \operatorname{dim} V \subseteq H$ recursively pick unit vectors $\left(v_{n}\right) \subseteq V$ $v_{0}=\left(0, \frac{1}{5}, \frac{3}{4}, \frac{1}{2}, \frac{1}{10}, \ldots\right) \quad$ (arbitrary)

$V \supseteq \operatorname{span}\left(v_{n}\right)={ }^{*}$ block subspace. \square

Block Subspaces

- V is a block subspace of $H=\operatorname{span}\left(e_{n}\right)$ means
$\exists \operatorname{IP}\left(I_{n}\right)$ and $\exists\left(v_{n}\right) \subseteq l^{2}$ s.t.
$V=\operatorname{span}\left(v_{n}\right)$ and $\forall n v_{n} \in \operatorname{span}\left\{e_{k}: k \in I_{n}\right\}$.
- Block subspaces are \leq^{*}-dense.

Given inf $\operatorname{dim} V \subseteq H$ recursively pick unit vectors $\left(v_{n}\right) \subseteq V$

$V \supseteq \operatorname{span}\left(v_{n}\right)={ }^{*}$ block subspace. \square

Block Subspaces

- V is a block subspace of $H=\operatorname{span}\left(e_{n}\right)$ means
$\exists \operatorname{IP}\left(I_{n}\right)$ and $\exists\left(v_{n}\right) \subseteq l^{2}$ s.t.
$V=\operatorname{span}\left(v_{n}\right)$ and $\forall n v_{n} \in \operatorname{span}\left\{e_{k}: k \in I_{n}\right\}$.
- Block subspaces are \leq^{*}-dense.

Given inf $\operatorname{dim} V \subseteq H$ recursively pick unit vectors $\left(v_{n}\right) \subseteq V$

$$
\begin{aligned}
& v_{0}=\left(0, \frac{1}{5}, \frac{3}{4}, \frac{1}{2}, \frac{1}{10}, \ldots\right) \quad(\text { arbitrary }) \\
& v_{1}=\left(0,0,0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{4}}, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{16}}, \ldots\right) \in V \cap l_{k_{0}}^{2 \perp}, k_{0} \gg 0 \\
& v_{2}=\left(0,0,0,0 \ldots, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \ldots\right) \in V \cap l_{k_{1}}^{2 \perp}, k_{1} \gg k_{0}
\end{aligned}
$$

$V \supseteq \operatorname{span}\left(v_{n}\right)={ }^{*}$ block subspace. \square

Block Subspaces

- V is a block subspace of $H=\operatorname{span}\left(e_{n}\right)$ means
$\exists \operatorname{IP}\left(I_{n}\right)$ and $\exists\left(v_{n}\right) \subseteq l^{2}$ s.t.
$V=\operatorname{span}\left(v_{n}\right)$ and $\forall n v_{n} \in \operatorname{span}\left\{e_{k}: k \in I_{n}\right\}$.
- Block subspaces are \leq^{*}-dense.

Given inf $\operatorname{dim} V \subseteq H$ recursively pick unit vectors $\left(v_{n}\right) \subseteq V$

$$
\begin{aligned}
& v_{0}=\left(0, \frac{1}{5}, \frac{3}{4}, \frac{1}{2}, \frac{1}{10}, \ldots\right) \quad(\text { arbitrary }) \\
& v_{1}=\left(0,0,0,0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{4}}, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{16}}, \ldots\right) \in V \cap l_{k_{0}}^{2 \perp}, k_{0} \gg 0 \\
& v_{2}=\left(0,0,0,0 \ldots, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, \ldots\right) \in V \cap l_{k_{1}}^{2 \perp}, k_{1} \gg k_{0}
\end{aligned}
$$

$V \supseteq \operatorname{span}\left(v_{n}\right)={ }^{*}$ block subspace. \square

Interval Paritions

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists \exists^{\infty} I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$.
$\mathfrak{s}^{\mathbb{I P}}=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathscr{P}(\omega)$ is an IP splitting family $\}$.
$\mathcal{A} \subseteq \mathscr{P}_{(\omega)}(\omega)$ mplitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting.
$\Rightarrow \mathfrak{s}^{\perp} \leq \mathfrak{s}^{\mathrm{IP}}$.
- $\mathfrak{s}^{\mathrm{IP}}=\max (5, \mathfrak{b})(\mathrm{A}$. Kamburelis, B. Weglorz (1995)). $\mathfrak{p} \leq \mathfrak{s}^{*} \leq \mathfrak{s}^{\perp} \leq \max (\mathfrak{s}, \mathfrak{b})$

Interval Paritions

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists^{\infty} n I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$.

$\mathcal{A} \subseteq \mathscr{P}(\omega)$ IP splitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting. $\Rightarrow \mathfrak{s}^{\perp} \leq \mathfrak{s I P}^{\text {IP }}$
- $\mathfrak{s}^{\mathrm{IP}}=\max (\mathfrak{s}, \mathfrak{b})($ A. Kamburelis, B. Weglorz (1995)).

Interval Paritions

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists^{\infty} n I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$. $\mathfrak{s}^{\mathrm{IP}}=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathscr{P}(\omega)$ is an IP splitting family $\}$. $\mathcal{A} \subseteq \mathscr{P}(\omega)$ IP splitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting. - $\mathfrak{s}^{\mathrm{IP}}=\max (\mathfrak{s}, \mathfrak{b})($ A. Kamburelis, B. Weglorz (1995)). $p \leq 5^{*} \leq 5^{1} \leq \max (5, b)$

Interval Paritions

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists^{\infty} n I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$.
$\mathfrak{s}^{\mathrm{IP}}=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathscr{P}(\omega)$ is an IP splitting family $\}$.
$\mathcal{A} \subseteq \mathscr{P}(\omega)$ IP splitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting.
- $\mathfrak{s}^{\mathrm{IP}}=\max (\mathfrak{s}, \mathfrak{b})($ A. Kamburelis, B. Weglorz (1995)).

Interval Paritions

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists^{\infty} n I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$. $\mathfrak{s}^{\mathrm{IP}}=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathscr{P}(\omega)$ is an IP splitting family $\}$.
$\mathcal{A} \subseteq \mathscr{P}(\omega)$ IP splitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting.
$\Rightarrow \mathfrak{s}^{\perp} \leq \mathfrak{s}^{\mathrm{IP}}$.
- $\mathfrak{s}^{\mathrm{IP}}=\max (\mathfrak{s}, \mathfrak{b})($ A. Kamburelis, B. Weglorz (1995)).

- Consequence: card invs on $\mathcal{P}(\mathcal{C}(H))$ often related to IP card invs.
- Eg. $A \subseteq \omega$ splits IP $\left(I_{n}\right) \Leftrightarrow \exists^{\infty} n I_{n} \subseteq A$ and $\exists{ }^{\infty} n I_{n} \subseteq \omega \backslash A$. $\mathfrak{s}^{\mathrm{IP}}=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathscr{P}(\omega)$ is an IP splitting family $\}$. $\mathcal{A} \subseteq \mathscr{P}(\omega)$ IP splitting $\Rightarrow\left(P_{A}\right)_{A \in \mathcal{A}}$ strongly splitting. $\Rightarrow \mathfrak{s}^{\perp} \leq \mathfrak{s}^{\mathrm{IP}}$.
- $\mathfrak{s}^{\mathrm{IP}}=\max (\mathfrak{s}, \mathfrak{b})$ (A. Kamburelis, B. Weglorz (1995)).

$$
\mathfrak{p} \leq \mathfrak{s}^{*} \leq \mathfrak{s}^{\perp} \leq \max (\mathfrak{s}, \mathfrak{b})
$$

- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- $\mathfrak{t}^{*}=\mathfrak{t}^{\perp}$. $=\mathfrak{t}$? $\mathfrak{t}^{*}>\mathfrak{p}\left(\right.$ Wofsey + Bell) so if $\mathfrak{t}^{*}<\mathfrak{t}$ then $\mathfrak{p}<\mathfrak{t}$.
- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.
$\circ \quad t=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\varepsilon}}\right)$ is a tower.

- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $\left[\omega,{ }^{1 \omega}\right.$ remain towers.

- $t^{*}=t^{\perp} .=t$? $t^{*} \geq \mathfrak{p}\left(\right.$ Wofsey + Bell) so if $t^{*}<t$ then $p<t$.
- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
, $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).
Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $\left[\omega^{1 \omega}\right.$ remain towers.
- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- Given IP $\left(I_{n}\right)$ set $v_{n}=\sum_{k \in I_{n}} e_{k}$ and $V_{\left(I_{n}\right)}=\operatorname{span}\left(v_{n}\right)$.

If $A \subseteq \omega$ s.t. $\left|A \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ then $V_{\left(I_{n}\right)} \subseteq^{*} V_{A}$ (Wofsey).
MA $\Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\forall \xi\left|A_{\xi} \cap I_{n}\right| /\left|I_{n}\right| \rightarrow 1$ $\Rightarrow \forall \xi V_{\left(I_{n}\right)} \subseteq^{*} V_{A_{\xi}}$, i.e. $\left(V_{A_{\xi}}\right)$ is not a tower.

- $\mathfrak{t}=\mathfrak{b} \Rightarrow \exists$ tower $\left(A_{\xi}\right) \subseteq[\omega]^{\omega}$ s.t. $\left(V_{A_{\xi}}\right)$ is a tower.
- $\left\{A \subseteq \omega: V_{A} \leq^{*} V\right\}$ is an analytic p-ideal (Steprans).

Consistently no towers in $\mathcal{I}^{*} \forall$ such ideals \mathcal{I} (Brendle).
Corollary: Consistently all towers in $[\omega]^{\omega}$ remain towers.

- $\mathfrak{t}^{*}=\mathfrak{t}^{\perp}$. $=\mathfrak{t}$? $\mathfrak{t}^{*} \geq \mathfrak{p}$ (Wofsey + Bell) so if $\mathfrak{t}^{*}<\mathfrak{t}$ then $\mathfrak{p}<\mathfrak{t}$.

*-Orthogonal and *-Incompatible Projections

Definition (${ }^{*}$-Orthogonality)
For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions), $\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}(\mathrm{MA})$.

Definition (*-Incompatibility)

For $P \quad O \in \mathcal{P}(H)$

- $\mathfrak{a}\left(T^{*}\right)=$ min size of $\max \leq^{*}$-antichain.
- $a\left(T^{*}\right)=\aleph_{1}<c($ Sacks Model $)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
$\bullet \mathfrak{b} \leq a^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions), $\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}$ (MA).

Definition (*-Incompatibility)

For $P \quad O \in \mathcal{P}(H)$

- $\mathfrak{a}\left(T^{*}\right)=$ min size of $\max \leq^{*}$-antichain.
$0 \quad a^{*}\left(T^{*}\right)=\lambda_{1}<c\left(\right.$ Sacks 1 Model 1$)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions), $\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}(\mathrm{MA})$.

Definition (*-Incompatibility)

For $P \quad O \in \mathcal{P}(H)$

- $\mathfrak{a}\left(T^{*}\right)=$ min size of $\max \leq^{*}$-antichain.
$0 \quad a^{\left(T^{*}\right)}=\lambda_{1}<c\left(\right.$ Saclos Model $\left.^{1}\right)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions), $\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}(\mathrm{MA})$.

Definition (*-Incompatibility)

For $P, Q \in \mathcal{P}(H)$

- $\mathfrak{a}\left(T^{*}\right)=$ min size of max \leq^{*}-antichain.
- $a\left(T^{*}\right)=\aleph_{1}<c($ Sacks Model $)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions), $\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}$ (MA).

Definition (*-Incompatibility)

For $P, Q \in \mathcal{P}(H), \quad P \top^{*} Q \Leftrightarrow\|\pi(P Q)\|<1$.

- $\mathfrak{a}\left(T^{*}\right)=$ min size of $\max \leq^{*}$-antichain.
$0\left(T^{*}\right)=\lambda_{1}<c\left(\right.$ Sacks $^{1-2}$ Model $)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions),

$$
\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}(\mathrm{MA}) .
$$

Definition (*-Incompatibility)

For $P, Q \in \mathcal{P}(H), \quad P \top^{*} Q \Leftrightarrow\|\pi(P Q)\|<1$.

- $\mathfrak{a}\left(T^{*}\right)=$ min size of max \leq^{*}-antichain.
- $\mathfrak{a}\left(T^{*}\right)=\aleph_{1}<\mathfrak{c}($ Sacks Model $)$.

*-Orthogonal and *-Incompatible Projections

Definition (*-Orthogonality)

For $P, Q \in \mathcal{P}(H), \quad P \perp^{*} Q \Leftrightarrow \pi(P Q)=0$.

- $\mathfrak{a}^{*}=\mathfrak{a}\left(\perp^{*}\right)=\min \left\{|\mathcal{P}| \geq \aleph_{0}: \mathcal{P} \max\right.$ s.t. $\left.\forall P, Q \in \mathcal{P}\left(P \perp^{*} Q\right)\right\}$.
- $\mathfrak{b} \leq \mathfrak{a}^{*}$ (Brendle).
- (Wofsey) Consistently: $\mathfrak{a}^{*}=\mathfrak{a}=\aleph_{1}<\mathfrak{c}$ (finite conditions),

$$
\mathfrak{a}^{*}=\mathfrak{a}=\mathfrak{c}>\aleph_{1}(\mathrm{MA})
$$

Definition (*-Incompatibility)

For $P, Q \in \mathcal{P}(H), \quad P \top^{*} Q \Leftrightarrow\|\pi(P Q)\|<1$.

- $\mathfrak{a}\left(T^{*}\right)=$ min size of max \leq^{*}-antichain.
- $\mathfrak{a}\left(T^{*}\right)=\aleph_{1}<\mathfrak{c}$ (Sacks Model).

