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Hilbert Space Projections and Subspaces

Definition
A Hilbert space is a (real or complex) vector space H together with a
complete inner product 〈·, ·〉 : H × H → F(= R or C).

H = l2 = {(xn) ⊆ F :
∑
|xn|2 <∞} and 〈(xn), (yn)〉 =

∑
xnyn.

Definition

A projection PV ∈ P(H) onto V ∈ V(H) is a linear operator such that

∀x ∈ H Px ∈ V and x− Px ⊥ V.

For U,V ∈ V(H),

U ⊆ V ⇔ PU ≤ PV ⇔ PUPV = PU = PVPU.
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Modulo Compact Operators

K(H) = {T ∈ B(H) : T[B1(H)] is compact}.

C(H) = B(H)/K(H).

π : B(H)→ C(H) is the canonical homomorphism.

U ≤∗ V ⇔ PU ≤∗ PV ⇔ π(PUPV) = π(PU) = π(PVPU).

Basis (en)n∈ω ⊆ H. Canonical Embedding P(ω) 7→ V(H),

A 7→ VA = span{en : n ∈ A}.

A ⊆∗ B⇔ VA ≤∗ VB
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Basic Order Properties

P(H) is not a lattice.

Theorem
sup(σe(PQP) ∩ [0, 1)) < 1.

⇔ ∃P ∧∗ Q.

⇔ ∃P ∨∗ Q.

⇔ ∃∗-max V ⊆ R(P) +R(Q).

Theorem

Arbitrary (Vn) ⊆ V(H) has ≤∗-equivalent decreasing (Un) ⊆ V(H).

Corollary

No non-trivial finite or countable gaps in V(H).
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Ultrafilters and Ultraprefilters

Definition
P is a preorder and F ⊆ P. F is a

1 prefilter base (on P) if ∀G ∈ [F ]<ω∃p ∈ P∀g ∈ G(p ≤ g).
2 filter base if F is a prefilter base on itself.
3 [pre]filter (on P) if F is an upwards closed [pre]filter base.
4 ultra[pre]filter (on P) if F a [pre]filter base maximal in P.

A filter F is an ultraprefilter⇔ ∀p ∈ P(p ∈ F ∨ p>q ∈ F).
If P is a lower semilattice then prefilters extend to filters.

Then ultrafilters and ultraprefilters coincide.
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P-Points

U ⊆ [ω]ω is an ultrafilter

U P-point⇒ VU = {VU : U ∈ U} ultraprefilter base.

Otherwise VU not in an ultraprefilter filter.

VU not an ultrafilter example

Take IP (In) ⊆ ω, |In| → ∞, vn =
∑

k∈In
ek and V(In) = span(vn).

Take ultrafilter U on ω s.t. ∀U ∈ U lim sup |U ∩ In|/|In| > 0.
Note: ∀U ∈ U(VU 6≤∗ V⊥(In)

∧ dim(VU ∩ V⊥(In)
) =∞).

∴ {VU ∩ V : U ∈ U} extends upwards-closre of VU .

Question
Can VU be an ultrafilter for non-P-point U?

Theorem
All ultraprefilter filters on P(H) are σ-closed (P-points).
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Q-Points

Definition
An ultrafilter P ⊆ P(H) is a Q-point if ∀ IP (In) ⊆ ω∃ coarser (Jn)
and vn ∈ span{em : m ∈ Jn} s.t. span(vn) ∈ P .

Proposition

Every P(H)-generic is an ultraprefilter Q-point.

Questions
Complete combinatorics? Other special ultrafilters? Rudin-Kiesler?
Are (V(H),≤∗) and (V∞(H),⊆) forcing equivalent?
(like (P(ω),⊆∗) and ([ω]ω,⊆))
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Mathias-Like Forcing

Definition
X × P is Mathias-like if

1 (x, p) ≤ (y, q)⇒ p ≤ q, and
2 p ≤ q⇒ (x, p) ≤ (x, q).

Proposition

If X × P is Mathias-like it is densely embeddable in P ∗ (X × Ġ).

Proposition
If ω × P is Mathias-like and P is proper so is X × P.
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Proposition
If ω × P is Mathias-like and P is proper so is X × P.

Tristan Bice Playing With Projections: Ultrafilters, Mathias Forcing and Cardinal Invariants with Closed Subspaces of l2



Mathias-Like Forcing

Definition
X × P is Mathias-like if

1 (x, p) ≤ (y, q)⇒ p ≤ q, and
2 p ≤ q⇒ (x, p) ≤ (x, q).

Proposition

If X × P is Mathias-like it is densely embeddable in P ∗ (X × Ġ).
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Mathias Forcing with Projections

[P∞(H)]<ωmin = {(P,P) : P ∈ P ∈ [P∞(H)]<ω ∧ ∀Q ∈ P(P ≤∗ Q)}

(P,P) ≤ (Q,Q)⇔ P ⊇ Q.

For dense (vn) ⊆ H, V<∞(vn)
= {spann∈F(vn) : F ∈ [ω]<ω}.

M∗ = V<∞(vn)
× ω × [P∞(H)]<ωmin.

(V, n,P,P) ≤ (W,m,Q,Q)⇔
V ⊇ W ∧ P ⊇ Q ∧ ∀R ∈ Q(||R|V∩W⊥ ||+ 1/n ≤ 1/m),

Transitivity: if ||R|V∩W⊥ ||+ 1/n ≤ 1/m and ||R|W∩X⊥ ||+ 1/m ≤ 1/l,

||R|V∩X⊥ ||+1/n ≤ ||R|V∩W⊥ ||+||R|W∩X⊥ ||+1/n ≤ ||R|W∩X⊥ ||+1/m ≤ 1/l.
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Splitting

P(ω)/Fin cardinal invariants have (≥)2 analogs ∵

P ∧∗ Q⊥ 6= 0 ⇒ P �∗ Q

m : m
||π(PQ⊥)|| = 1 ||π(PQ⊥)|| > 0

P strongly splits Q⇔ P ∧∗ Q 6= 0 6= P⊥ ∧∗ Q.

P weakly splits Q⇔ P ∧∗ Q 6= 0 and Q �∗ P.

s⊥ = min{|P| : P ⊆ P(H) is a strongly splitting family}.

s∗ = min{|P| : P ⊆ P(H) is a weakly splitting family}.
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Block Subspaces

V is a block subspace of H = span(en) means
∃ IP (In) and ∃(vn) ⊆ l2 s.t.
V = span(vn) and ∀n vn ∈ span{ek : k ∈ In}.
Block subspaces are ≤∗-dense.

Given inf dim V ⊆ H recursively pick unit vectors (vn) ⊆ V

v0 = (0,
1
5
,

3
4
,

1
2
,

1
10
, . . .) (arbitrary)

v1 = (0, 0, 0, 0,
1√
2
,

1√
4
,

1√
8
,

1√
16
, . . .) ∈ V ∩ l2⊥k0

, k0 >> 0

v2 = (0, 0, 0, 0 . . . , 0,
1
2
,

1
2
,

1
2
,

1
2
, 0, . . .) ∈ V ∩ l2⊥k1

, k1 >> k0

...

V ⊇ span(vn) =∗ block subspace. �
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Interval Paritions

Consequence: card invs on P(C(H)) often related to IP card invs.

Eg. A ⊆ ω splits IP (In) ⇔ ∃∞n In ⊆ A and ∃∞n In ⊆ ω\A.

sIP = min{|A| : A ⊆P(ω) is an IP splitting family}.

A ⊆P(ω) IP splitting⇒ (PA)A∈A strongly splitting.

⇒ s⊥ ≤ sIP.

sIP = max(s, b) (A. Kamburelis, B. Weglorz (1995)).

p ≤ s∗ ≤ s⊥ ≤ max(s, b)
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Towers

Given IP (In) set vn =
∑

k∈In
ek and V(In) = span(vn).

If A ⊆ ω s.t. |A ∩ In|/|In| → 1 then V(In) ⊆∗ VA (Wofsey).

MA ⇒ ∃ tower (Aξ) ⊆ [ω]ω s.t. ∀ξ|Aξ ∩ In|/|In| → 1
⇒ ∀ξV(In) ⊆∗ VAξ

, i.e. (VAξ
) is not a tower.

t = b ⇒ ∃ tower (Aξ) ⊆ [ω]ω s.t. (VAξ
) is a tower.

{A ⊆ ω : VA ≤∗ V} is an analytic p-ideal (Steprans).

Consistently no towers in I∗ ∀ such ideals I (Brendle).

Corollary: Consistently all towers in [ω]ω remain towers.

t∗ = t⊥. = t? t∗ ≥ p (Wofsey+Bell) so if t∗ < t then p < t.
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∗-Orthogonal and ∗-Incompatible Projections

Definition (∗-Orthogonality)

For P,Q ∈ P(H), P⊥∗Q⇔ π(PQ) = 0.

a∗ = a(⊥∗) = min{|P| ≥ ℵ0 : P max s.t. ∀P,Q ∈ P(P⊥∗Q)}.
b ≤ a∗ (Brendle).

(Wofsey) Consistently: a∗ = a = ℵ1 < c (finite conditions),
a∗ = a = c > ℵ1 (MA).

Definition (∗-Incompatibility)

For P,Q ∈ P(H), P>∗Q⇔ ||π(PQ)|| < 1.

a(>∗) = min size of max ≤∗-antichain.

a(>∗) = ℵ1 < c (Sacks Model).
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